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dyadic Green’s function to be calculated, and circumvents

the extensive algebraic manipulation associated with for-

mulations described previously. Numerical results

obtained using this method have been presented and

compared to other existing data. Good agreement was

obtained in all cases thus establishing the accuracy and

applicability of the method for the full range of structure

parameters. Design curves have been included here for

millimeter-wave fin lines of practical interest. Both center

and off-center fin locations have been discussed, and the

off-center location was shown to result in no significant

change in impedance for small values of W/b. Lower

impedance may be realized, however, by using a single-fin

configuration.

It is clear from the results presented here that the fin

line may exhibit the characteristics of a ridged waveguide,

slotline, or dielectric slab-loaded waveguide, depending

upon the values of the various fin-line parameters. All of

these structures are fin-line substructures.
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The Accuracy of TLM Analysis of Finned
Rectangular Waveguides

YI-CHI SHIH, STUDENT MEMBER, IEEE, AND WOLFGANG J. R. HOEFE~ SENIOR MEMBER, IEEE

AWnzet-This paper fnvestigatea three sources of error affect@ the

Transmkion Lii Matrix (TLM) analysis of fhmed rectangular wave-

gufdea. It is shown how truncation and velocity errors can be mfnhnk@

and a diagram for maxfmmn coarseness error affecting the TLM analysfs

is presented. After error cmrectio~ cutoff frequencies obtained with the

TLM method are in exceflent agreement with results obtafned with the

‘fhmsvene Resonance Method.
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I. INTRODUCTION

T HE TWO-DIMENSIONAL Transmission Line

Matrix (TLM) method was developed by Johns and

Beurle [1] and has been successfully applied to waveguide

bifurcation scattering problems [1] and to the ridged

waveguide problem [2].

It is a powerful tool for solving the homogeneous wave

equation in complex structures and, therefore, can be used

to verify the accuracy of approximate solutions, provided

that the errors affecting the TLM solution are known and

can be corrected. The aforementioned authors have
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TABLE I
COMPARISON OF VALUSS OBTAINED wrm THE TLM M~THODFORTHSNORMALW,SDCUTOFF

FRSQUBNCY OF THE TEIO MODE m RSC’MNGULAR WAVRGUIDBS USING DIFFERENT MESH.-
SZJ3S’

umber of
odes along
ide b

/Afi

1

2

4

8

16

Assumption: v = c/~2—

aS DXODOSed in [1]

0.23570

0.24667

0.24924

0.24974

0.24981

Velocity plus

truncation error:

Ev + ET(%)

-5.7

-1.3

-0.3

-0.1

-0.08

Assumption: V as defined

by eq. (3)

0.25003

0.24996

0.25005

0.24994

0.24986

Velocity plus
truncation errors

Ev + ET(%)

0,01

-0.02

0.02

-0.02

-0.06

,ccuratc

alue of

b/J
c

0.25

‘The truncation error ET is always smatter than 0.2 percent. The velocity enor Ev can be avoided by
considering that the propagation velocity atong the axes of the TLM mesh is governed by (3).

specified three types of errors affecting the results ob-

tained with this method, namely, truncation error, velocity

error, and “coarseness” error. While the first two types of

errors can be readily defined and predicted, the coarse-

ness error which reflects the spatial resolution of the TLM

is more difficult to evaluate and to analyze.

The present paper investigates these three errors as they

occur in the TLM analysis of a finned waveguide (a

ridged waveguide with a centered ridge of zero thickness).

The finned waveguide was selected for the following rea-

sons:

a) This structure was used successfully by Konishi

et al. [4], [5] in the realization of converters and filters. It

is thus of practical interest.

b) It can be analyzed very accurately using the Trans-

verse Resonance Method and Marcuvitz’ [6] expression

for the susceptance of the fins. Results can thus be veri-

fied with accuracy.

c) This structure is a special case of the fin line, a very

promising transmission medium for millimeter waves. The

authors plan to determine the parameters of discontinui-

ties in both finned waveguides and fin lines with the TLM

method. These structures are not easily accessible through

other methods.

The present paper thus establishes the suitability of the

TLM method as a verification of other methods and as a

tool for millimeter wave circuit design.

The reader may ask why the cutoff wavelength is

evaluated rather than the guided wavelength at some

higher frequency. The answer is that the guided wave-

length As can be obtained from the cutoff wavelength AC

by the well-known expression

A* =A[ 1– (A/Ac)2] - “2 (1)

A= free space wavelength.

H. TRUNCATION ERROR N VELOCITY ERROR

When the resonant frequency of a structure is evaluated

with the TLM method, the impulse response of a trans-

mission line network simulating this structure is com-

puted. In a practical calculation this impulse response

must be limited in time. The error introduced by this

limitation is the truncation error ET. Its maximum value is

determined [2] by

AS 3A=
.&

‘T= Al/Ac SN2r2Al
(2)

where S is the frequency separation (expressed in terms of

Al/A) between two neighboring peaks in the frequency

response obtained from the impulse response via Fourier

transform. N is the number of iterations processed. Al is
the mesh parameter of the transmission line lattice, and A

is the free space wavelength. Normally, the truncation

error is smaller than the maximum value obtained with

the above formula. It decreases rapidly with an increasing

number of iterations.
Due to the slow wave characteristics of the transmission

line lattice, the velocity of a wave traveling through this

network depends on the angle between the propagation

direction and the mesh axes. By assuming, as Johns and

Beurle [1] suggested, that the propagation velocity is inde-

pendent of the direction of propagation and equal to

c/ fi , the velocity error Ev is introduced.

If the wave propagates along one of the axes of the

mesh, its propagation velocity is defined by

‘in(%=tisin(%)(3)

P.= 2r/& where & is the wavelength of propagation
along this axis. Thus if a rectangular waveguide is treated

with the TLM method, the velocity error can be

eliminated in the case of the TEIO mode by determining

the wave velocity in the direction of the broad wall

directly from (3).

To demonstrate the effectiveness of the correction of

the velocity error, Table I lists values for the cutoff

frequency of the TEIO mode in a rectangular waveguide of

aspect ratio b/a = 1/2, obtained with the TLM method

using different mesh sizes. In all calculations, the number

of iterations was sufficiently high to keep the truncation

error below 0.2 percent. It is found that by assuming a
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velocity of c/~ , the coarsest mesh yields a cutoff

frequency which is too low by 5.7 percent. If, however, (3)

is applied to correct the velocity error, the remaining

inaccuracy is negligible and may be attributed to trunca-

tion (<0.2 percent).

Even in finned rectangular waveguides, the velocity

error in the TEIO cutoff frequency may be practically

eliminated by applying (3), in spite of the fact that in the

immediate vicinity of the fins, the wave propagation does

not exactly coincide with a mesh axis. However, a third

type of error (coarseness error) is dominant in the TLM

calculations of finned waveguides. This error will be de-

fined and evaluated below.

III. COARSENESSERROR

It has been shown in the previous section that the TLM

evaluation of the fundamental cutoff frequency in rectan-

gular waveguides is quite accurate, even if a very coarse

mesh is used, provided that the velocity error is corrected.

However, if transverse discontinuities (e.g. ridges or fins)

are present in the guide, the TLM mesh must be fine

enough to resolve the fields in the regions where the

gradient of the electric potential is highest. The question

is, in other words, how many nodes should be chosen in

the immediate vicinity of the discontinuity in order to

keep the coarseness error within desired limits?

Unfortunately, there are no general rules or equations

to evaluate this error. In order to study its behavior in the

case of finned rectangular waveguides, the normalized

TEIO cutoff frequency b/At of the guide shown in Fig. 1

was calculated using several mesh sizes. An aspect ratio of

b/a = 1/2 was chosen, and several values of b/Al for the

mesh parameter were selected. The corresponding TEIO

cutoff frequencies are presented in Fig. 2.

Note that in all cases, the error due to truncation is

smaller than 0.4 percent, and the velocity error is negligi-

ble after corrections according to (3). Circles represent the

results obtained for a normalized gap width of d/b= 0.5,

and triangles correspond to d/b= 0.25.

It appears that the normalized cutoff frequency of the

fundamental mode tends asymptotically toward its ac-

curate value as the mesh becomes finer. It turns out that

the coarseness error, i.e., the relative separation between

the calculated and the asymptotic value is directly propor-

tional to Ai/b, the inverse of the abscissa in Fig. 2. It is

therefore easy to obtain accurate values for b/At by linear

extrapolation toward Al/ b = O.

Table II shows how the asymptotic values of b/At
depend on the normalized gap width d/b. For compari-

son, cutoff frequencies obtained with the Transverse Res-

onance Method [3] are also shown. Excellent agreement

exists between both methods once the coarseness error has

been eliminated by extrapolation.

Furthermore, the dependence of the coarseness error on

the number of nodes situated within the gap separating

the fins has been investigated. (The error was always

evaluated with respect to the asymptotic value of the

cutoff frequency.) Fig. 3 shows this error in percent as a

function of the normalized gap width d/b. The waveguide

t= -1

T
1

------

Fig. 1 (a) Cross scetion of finned rectangular waveguide. (b) Two-di-
mensional shunt node TLM network simulating the waveguide shown
in (a). Through introduction of appropriate symmetry conditions, only
one quarter of the cross section is required for the analysis of the TEIO
mode. Note that in the TLM network, boundaries are dual to those in
the real structure. (—: Electric wall; ----: magnetic wall.)
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Fig. 2 Normalized TEIO cutoff frequency in rectangular finned wave-
guides of aspect ratio b/a= 1/2 with normalized gap widths of
d/b = 1/2 (circles) and 1/4 (triangles), obtained with the TLM
method” usin”g increasingly fbe meshes.

TABLE II
No~ r2TEIO CUTOFFFRKWENCY IN FINNED WAVEGUIDE

OF ASPECT !iKmo b/a= 1/2, FOR SEVERALNORMALIZED GAP

WIDTHS d/ha

Omi;i’’dGa
2/3

1/2

1/3

1/4

1/8

1/16

0.2391

0.2253

0.2054

0.1932

0.1697

0.1522

0.2389
I

0.08

0.2249 I 0.19

0.2052 I 0.10

0.1928 I 0.21
I

0.1690 0.41

0.151S 0.28

‘TLM results have been obtained by extrapolation toward Al/b= O,
and they are compared with values obtained with the Transverse
Resonanee Method [3].
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Fig. 3 Coarseness error affecting the normalized TEIO cutoff frequency
in fimed waveguides of aspect ratio b/a= 0.5 as a function of the gap
width, when calculated with the TLM method. Two, four, and eight
nodes have been placed within the gap.
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Fig. 4 Maximum coarseness error affecting the normalized TEIO cutoff
frequency i. finned waveguides as a function of Al/a when ealcrdated
with the TLM method. Two, four, and eight nodes have been placed
within the gap.

aspect ratio was kept constant at b/a= 1/2, and calcula-

tions have been made with two, four, and eight nodes

situated between the fins. It appears that whatever the

coarseness of the TLM mesh, the error is always maxi-

mum in the vicinity of d/b= 1/2, which is henceforth

considered to be the “worst case.”

Assuming this worst case to prevail, the coarseness

error was then evaluated for various values of Al/a and

presented in Fig. 4. Since d/b is constant (equal to 1/2),

the circles represent the maximum coarseness error for

finned guides of various aspect ratios b/a, all featuring

two nodes between the fins. Triangles correspond to four

nodes between fins, and squares to eight nodes. Hence, it

is possible to deduce from Fig. 4 the maximum coarseness

error when calculating the cutoff frequency of the lowest

mode of propagation in a firmed rectangular waveguide

with the TLM method.

IV. FEATURES OF THE COMPUTER PROGRAM

The TLM program is written in Fortran IV and re-

quires 4 locations to represent one node. The storage

array required for a 16X 8 matrix (see Fig. 1) is thus

4X 16X 8 locations. An additional number of locations,

equal to the number N of iterations processed (usually

Ns800), is required to store the output impulse function.

The reserved arrays and the program itself require a total

core memory of about 10K bytes. An IBM 360 System

executes 800 iterations in about 8 s of CPU-time.

V. CONCLUSION

When the cutoff frequency of the TEIO mode in finned

waveguides is calculated with the TLM method, trunca-

tion, velocity, and coarseness errors occur.

The truncation error can be evaluated easily using (2).

The velocity error can be corrected by applying (3). The

coarseness error, which is dominant in the structures

discussed here, was found to be maximum for a normal-

ized gap width of d/b= 1/2, regardless of the aspect ratio

b/a and the coarseness of the TLM mesh. Its value can

be predicted with the aid of Fig. 4 for a wide range of

guide dimensions and mesh sizes. More important, the

coarseness error can be eliminated by linearly extrapolat-

ing results obtained with lattices of different mesh param-

eters. For reasons of geometrical similarity, this study is

relevant to the TLM analysis of fin lines. They differ from

finned waveguides only by the presence of a thin dielec-

tric sheet of low perrnittivity adjacent to the fins.
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