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dyadic Green’s function to be calculated, and circumvents
the extensive algebraic manipulation associated with for-
mulations described previously. Numerical results
obtained using this method have been presented and
compared to other existing data. Good agreement was
obtained in all cases thus establishing the accuracy and
applicability of the method for the full range of structure
parameters. Design curves have been included here for
millimeter-wave fin lines of practical interest. Both center
and off-center fin locations have been discussed, and the
off-center location was shown to result in no significant
change in impedance for small values of W/b. Lower
impedance may be realized, however, by using a single-fin
configuration.

It is clear from the results presented here that the fin
line may exhibit the characteristics of a ridged waveguide,
slotline, or dielectric slab-loaded waveguide, depending
upon the values of the various fin-line parameters. All of
these structures are fin-line substructures.
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Abstract—This paper investigates three sources of error affecting the
Transmission Line Matrix (TLM) analysis of finned rectangular wave-
guides. It is shown how truncation and velocity errors can be minimized,
and a diagram for maximum coarseness error affecting the TLM analysis
is presented. After error correction, cutoff frequencies obtained with the
TLM method are in excellent agreement with results obtained with the
Transverse Resonance Method.
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1. INTRODUCTION

HE TWO-DIMENSIONAL Transmission Line

Matrix (TLM) method was developed by Johns and
Beurle [1] and has been successfully applied to waveguide
bifurcation scattering problems [1] and to the ridged
waveguide problem [2].

It is a powerful tool for solving the homogeneous wave
equation in complex structures and, therefore, can be used
to verify the accuracy of approximate solutions, provided
that the errors affecting the TLM solution are known and
can be corrected. The aforementioned authors have
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TABLE 1
COMPARISON OF VALUES OBTAINED WITH THE TLM METHOD FOR THE NORMALIZED CUTOFF
FREQUENCY OF THE TE,; MODE IN RECTANGULAR WAVEGUIDES USING DIFFERENT MESH

Sizes*
Number of Assumption: v = c/AZ Assumption: V as defined Accurate
nodes along N b
side b as proposed in [1] Yy eq. (3) value of
Normalized TE Velocity plus Normalized TE Velocity plus
b/bt cutoff freque;igy truncation errors| cutoff freque;igy truncation errors
b/}\c EV + ET(%) b/)\c Ev + ET(%) b/)‘c

1 0.23570 -5.7 0.25003 0.01

2 0.24667 -1.3 0.24996 -0.02

4 0.24924 -0.3 0.25005 0.02 0.25

8 0.24974 -0.1 0.24994 -0.02

16 0.24981 ~0.08 0.24986 -0.06

2The truncation error E; is always smaller than 0.2 percent. The velocity error E}, can be avoided by
considering that the propagation velocity along the axes of the TLM mesh is governed by (3).

specified three types of errors affecting the results ob-
tained with this method, namely, truncation error, velocity
error, and “coarseness” error. While the first two types of
errors can be readily defined and predicted, the coarse-
ness error which reflects the spacial resolution of the TLM
is more difficult to evaluate and to analyze.

The present paper investigates these three errors as they
occur in the TLM analysis of a finned waveguide (a
ridged waveguide with a centered ridge of zero thickness).
The finned waveguide was selected for the following rea-
sons:

a) This structure was used successfully by Konishi
et al. [4], [5] in the realization of converters and filters. It
is thus of practical interest.

b) It can be analyzed very accurately using the Trans-
verse Resonance Method and Marcuvitz’ [6] expression
for the susceptance of the fins. Results can thus be veri-
fied with accuracy.

¢) This structure is a special case of the fin line, a very
promising transmission medium for millimeter waves. The
authors plan to determine the parameters of discontinui-
ties in both finned waveguides and fin lines with the TLM
method. These structures are not easily accessible through
other methods.

The present paper thus establishes the suitability of the
TLM method as a verification of other methods and as a
tool for millimeter wave circuit design.

The reader may ask why the cutoff wavelength is
evaluated rather than the guided wavelength at some
higher frequency. The answer is that the guided wave-
length A, can be obtained from the cutoff wavelength A,
by the well-known expression

A=A[1=(/A) ]

A=free space wavelength.
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II. TRUNCATION ERROR AND VELOCITY ERROR

When the resonant frequency of a structure is evaluated
with the TLM method, the impulse response of a trans-
mission line network simulating this structure is com-

puted. In a practical calculation this impulse response
must be limited in time. The error introduced by this
limitation is the truncation error E,. Its maximum value is
determined [2] by

_AS 3A, @)

Al/A, SN22Al
where S is the frequency separation (expressed in terms of
Al/A) between two neighboring peaks in the frequency
response obtained from the impulse response via Fourier
transform. N is the number of iterations processed. A/ is
the mesh parameter of the transmission line lattice, and A
is the free space wavelength. Normally, the truncation
error is smaller than the maximum value obtained with
the above formula. It decreases rapidly with an increasing
number of iterations.

Due to the slow wave characteristics of the transmission
line lattice, the velocity of a wave traveling through this
network depends on the angle between the propagation
direction and the mesh axes. By assuming, as Johns and
Beurle [1] suggested, that the propagation velocity is inde-
pendent of the direction of propagation and equal to
¢/ V2, the velocity error E,, is introduced.

If the wave propagates along one of the axes of the
mesh, its propagation velocity is defined by

sin( 'B"Al) =V2 sin(—‘f;—Ag )

=+

Er

> 3)

B,=2=n/A,, where A, is the wavelength of propagation
along this axis. Thus if a rectangular waveguide is treated
with the TLM method, the velocity error can be
eliminated in the case of the TE,;, mode by determining
the wave velocity in the direction of the broad wall
directly from (3).

To demonstrate the effectiveness of the correction of
the velocity error, Table I lists values for the cutoff
frequency of the TE,, mode in a rectangular waveguide of
aspect ratio b/a=1/2, obtained with the TLM method
using different mesh sizes. In all calculations, the number
of iterations was sufficiently high to keep the truncation
error below 0.2 percent. It is found that by assuming a
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velocity of ¢/ V2, the coarsest mesh yields a cutoff
frequency which is too low by 5.7 percent. If, however, (3)
is applied to correct the velocity error, the remaining
inaccuracy is negligible and may be attributed to trunca-
tion (< 0.2 percent).

Even in finned rectangular waveguides, the velocity
error in the TE,, cutoff frequency may be practically
eliminated by applying (3), in spite of the fact that in the
immediate vicinity of the fins, the wave propagation does
not exactly coincide with a mesh axis. However, a third
type of error (coarseness error) is dominant in the TLM
calculations of finned waveguides. This error will be de-
fined and evaluated below.

II1.

It has been shown in the previous section that the TLM
evaluation of the fundamental cutoff frequency in rectan-
gular waveguides is quite accurate, even if a very coarse
mesh is used, provided that the velocity error is corrected.
However, if transverse discontinuities (e.g. ridges or fins)
are present in the guide, the TLM mesh must be fine
enough to resolve the fields in the regions where the
gradient of the electric potential is highest. The question
is, in other words, how many nodes should be chosen in
the immediate vicinity of the discontinuity in order to
keep the coarseness error within desired limits?

Unfortunately, there are no general rules or equations
to evaluate this error. In order to study its behavior in the
case of finned rectangular waveguides, the normalized
TE,, cutoff frequency b/A, of the guide shown in Fig. 1
was calculated using several mesh sizes. An aspect ratio of
b/a=1/2 was chosen, and several values of b/A/ for the
mesh parameter were selected. The corresponding TE,,
cutoff frequencies are presented in Fig, 2.

Note that in all cases, the error due to truncation is
smaller than 0.4 percent, and the velocity error is negligi-
ble after corrections according to (3). Circles represent the
results obtained for a normalized gap width of d/b=0.5,
and triangles correspond to d/b=0.25.

It appears that the normalized cutoff frequency of the
fundamental mode tends asymptotically toward its ac-
curate value as the mesh becomes finer. It turns out that
the coarseness error, i.e., the relative separation between
the calculated and the asymptotic value is directly propor-
tional to A//b, the inverse of the abscissa in Fig. 2. It is
therefore easy to obtain accurate values for /A, by linear
extrapolation toward Al//b=0.

Table II shows how the asymptotic values of b/A,
depend on the normalized gap width d/b. For compari-
son, cutoff frequencies obtained with the Transverse Res-
onance Method [3] are also shown. Excellent agreement
exists between both methods once the coarseness error has
been eliminated by extrapolation.

Furthermore, the dependence of the coarseness error on
the number of nodes situated within the gap separating
the fins has been investigated. (The error was always
evaluated with respect to the asymptotic value of the
cutoff frequency.) Fig. 3 shows this error in percent as a
function of the normalized gap width d/b. The waveguide

COARSENESS ERROR
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Fig. 1 (a) Cross section of finned rectangular waveguide. (b) Two-di-

mensional shunt node TLM network simulating the waveguide shown
in (a). Through introduction of appropriate symmetry conditions, only
one quarter of the cross section is required for the analysis of the TEq
mode. Note that in the TLM network, boundaries are dual to those in

the real structure. (——: Electric wall;----: magnetic wall.)
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Fig. 2 Normalized TE,, cutoff frequency in rectangular finned wave-
guides of aspect ratio b/a=1/2 with normalized gap widths of
d/b=1/2 (circles) and 1/4 (triangles), obtained with the TLM
method using increasingly fine meshes.

TABLE II
NormAaLIZED TE,q CutoFF FREQUENCY IN FINNED WAVEGUIDE
OF ASPECT RATIO b/a=1/2, FOR SEVERAL NORMALIZED GAP

WipTHs d/b*
Normalized Gap Normalized TElo cutoff Difference

g}gth frequency b/Ac in %

TLM Transverse

method Resonance

Method

2/3 0.2391 0.2389 0.08
1/2 0.2253 0.2249 0.19
1/3 0.2054 0.2052 0.10
1/4 0.1932 0.1928 0.21
1/8 0.1697 0.1690 0.41
1/16 0.1522 0.1518 0.28

ATLM results have been obtained by extrapolation toward Al/b=0,
and they are compared with values obtained with the Transverse
Resonance Method {3].
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Fig. 3 Coarseness error affecting the normalized TE,;, cutoff frequency
in finned waveguides of aspect ratio b/a=0.5 as a function of the gap
width, when calculated with the TLM method. Two, four, and eight
nodes have been placed within the gap.
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Fig. 4 Maximum coarseness error affecting the normalized TE,, cutoff
frequency in finned waveguides as a function of Al /a when calculated
with the TLM method. Two, four, and eight nodes have been placed
within the gap.

aspect ratio was kept constant at b/a=1/2, and calcula-
tions have been made with two, four, and eight nodes
situated between the fins. It appears that whatever the
coarseness of the TLM mesh, the error is always maxi-
mum in the vicinity of d/b=1/2, which is henceforth
considered to be the “worst case.”
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Assuming this worst case to prevail, the coarseness
error was then evaluated for various values of A//a and
presented in Fig. 4. Since d/b is constant (equal to 1/2),
the circles represent the maximum coarseness error for
finned guides of various aspect ratios b/a, all featuring
two nodes between the fins. Triangles correspond to four
nodes between fins, and squares to eight nodes. Hence, it
is possible to deduce from Fig. 4 the maximum coarseness
error when calculating the cutoff frequency of the lowest
mode of propagation in a finned rectangular waveguide
with the TLM method.

IV. FEATURES OF THE COMPUTER PROGRAM

The TLM program is written in Fortran IV and re-
quires 4 locations to represent one node. The storage
array required for a 16X8 matrix (see Fig. 1) is thus
4x16 %8 locations. An additional number of locations,
equal to the number N of iterations processed (usually
N=800), is required to store the output impulse function.
The reserved arrays and the program itself require a total
core memory of about 10K bytes. An IBM 360 System
executes 800 iterations in about 8 s of CPU-time.

V. CONCLUSION

When the cutoff frequency of the TE,, mode in finned
waveguides is calculated with the TLM method, trunca-
tion, velocity, and coarseness errors occur.

The truncation error can be evaluated easily using (2).
The velocity error can be corrected by applying (3). The
coarseness error, which is dominant in the structures
discussed here, was found to be maximum for a normal-
ized gap width of d/b=1/2, regardless of the aspect ratio
b/a and the coarseness of the TLM mesh. Its value can
be predicted with the aid of Fig. 4 for a wide range of
guide dimensions and mesh sizes. More important, the
coarseness error can be eliminated by linearly extrapolat-
ing results obtained with lattices of different mesh param-
eters. For reasons of geometrical similarity, this study is
relevant to the TLM analysis of fin lines. They differ from
finned waveguides only by the presence of a thin dielec-
tric sheet of low permittivity adjacent to the fins.
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